Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state.

نویسندگان

  • Xinlin Du
  • Gavin E Black
  • Paolo Lecchi
  • Fred P Abramson
  • Stephen R Sprang
چکیده

A remote labeling method has been developed to determine (18)O kinetic isotope effects (KIEs) in Ras-catalyzed GTP hydrolysis. Substrate mixtures consist of (13)C-depleted GTP and [(18)O,(13)C]GTP that contains (18)O at phosphoryl positions of mechanistic interest and (13)C at all carbon positions of the guanosine moiety. Isotope ratios of the nonvolatile substrates and products are measured by using a chemical reaction interface/isotope ratio mass spectrometer. The isotope effects are 1.0012 (0.0026) in the gamma nonbridge oxygens, 1.0194 (0.0025) in the leaving group oxygens (the beta-gamma oxygen and the two beta nonbridge oxygens), and 1.0105 (0.0016) in the two beta nonbridge oxygens. The KIE in the beta-gamma bridge oxygen was computed to be 1.0116 or 1.0088 by two different methods. The significant KIE in the leaving group reveals that chemistry is largely rate-limiting whereas the KIEs in the gamma nonbridge oxygens and the leaving group indicate a loose transition state that approaches a metaphosphate. The KIE in the two beta nonbridge oxygens is roughly equal to that in the beta-gamma bridge oxygen. This indicates that, in the transition state, Ras shifts one-half of the negative charge that arises from P(gamma)-O(beta-gamma) fission from the beta-gamma bridge oxygen to the two beta nonbridge oxygens. The KIE effects, interpreted in light of structural and spectroscopic data, suggest that Ras promotes a loose transition state by stabilizing negative charge in the beta-gamma bridge and beta nonbridge oxygens of GTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject o...

متن کامل

Ras-catalyzed hydrolysis of GTP: a new perspective from model studies.

Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-cat...

متن کامل

Ras: structural details to guide direct targeting

These proteins are mutated in about 20% of all human cancers and are thus important targets for drug discovery [1]. Major efforts over the last 20 years have not yielded drugs, promoting the notion that Ras is undruggable [2]. Recent advances in the structural biology of Ras provide new venues to be explored. The crystal structure of Ras has been known for over 25 years. Structural rearrangemen...

متن کامل

Synthesis of nucleotides with specific radiolabels in ribose. Primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP, and inosine.

Adenosine 5'-phosphate was synthesized with 3H or 14C label specifically located as [1'-3H]AMP, [1'-14C] AMP, [5'-3H]AMP, and [5'-14C]AMP. The synthesis was accomplished from adenine and glucose or adenine and ribose using enzymes from the pentose pathway and/or from the purine salvage pathways. Structural analysis of the compounds confirmed the locations of the radiolabels. The methods provide...

متن کامل

Theoretical predictions of isotope effects versus their experimental values for an example of uncatalyzed hydrolysis of atrazine.

Kinetic isotope effects are one of the most powerful experimental techniques for establishing the nature of a chemical process. However their interpretation very often seeks support from electronic structure calculations in order to get detailed information regarding the transition state which is not experimentally available. For an example of atrazine hydrolysis we have shown how the match bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 24  شماره 

صفحات  -

تاریخ انتشار 2004